[ad8447]: / (2) PyTorch_HistoTNet / pytorch_histotnet.py

Download this file

468 lines (396 with data), 21.0 kB

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
# --------------------------
# IMPORT
from torchvision import models
from torchvision import transforms
from torchvision import datasets
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import warnings
# warnings.filterwarnings("ignore")
import os
import shutil
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics.pairwise import euclidean_distances
import split_folders
from random import seed
from random import random
from datetime import datetime
import pickle
import PIL
# --------------------------
# PRIV FUNCTIONS
import util
import functions
from modelGeno.vgg16_bn_Mahdi import vgg16_bn_Mahdi
# --------------------------
# CLASSES
from classes.classesADP import classesADP
# --------------------------
# MAIN
if __name__ == '__main__':
# params
plotta = False
log = True
extOrig = 'tif'
extNew = 'png'
num_iterations = 10
# nFolds = 10
batch_sizeP = 8 #32
batch_sizeP_norm = 8
numWorkersP = 0
n_neighborsP = 1
fontSize = 22
padSize = 30
num_epochs = 100
# ------------------------------------------------------------------- db info
dirWorkspace = './db/'
dirPretrainedModels = './pretrained_nets/'
dbName = 'ALL_IDB2'
ROI = 'ROI'
# ------------------------------------------------------------------- Enable CUDA
cuda = True if torch.cuda.is_available() else False
# Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
Tensor = torch.cuda.DoubleTensor if cuda else torch.cuda.DoubleTensor
if cuda:
torch.cuda.empty_cache()
print("Cuda is {0}".format(cuda))
#util.pause()
# ------------------------------------------------------------------- dirs
dirDbOrig = dirWorkspace + dbName + '/'
dirDbTest = dirWorkspace + dbName + '/datastore/'
dirOutTrainTest = dirWorkspace + dbName + '/datastore_trainTest/'
if not os.path.exists(dirDbTest):
os.makedirs(dirDbTest)
if not os.path.exists(dirOutTrainTest):
os.makedirs(dirOutTrainTest)
# ------------------------------------------------------------------- transform db
util.dbToDataStore(dirDbOrig, dirDbTest, extOrig, extNew, log)
# ------------------------------------------------------------------- define all models we want to try
modelNamesAll = list()
modelNamesAll.append({'name': 'resnet18', 'sizeFeatures': 512})
modelNamesAll.append({'name': 'vgg16_bn_Mahdi', 'sizeFeatures': 512})
# ------------------------------------------------------------------- loop on hierarchies
for hierarNum in range(0, 3):
# ------------------------------------------------------------------- loop on models
for i, (modelData) in enumerate(modelNamesAll):
# dir results
dirResult = './results/' + 'level_{}'.format(hierarNum+1) + '/' + modelData['name'] + '/'
if not os.path.exists(dirResult):
os.makedirs(dirResult)
# result file
now = datetime.now()
current_time = now.strftime("%Y_%m_%d_%H_%M_%S")
fileResultName = current_time + '.txt'
fileResultNameFull = os.path.join(dirResult, fileResultName)
fileResult = open(fileResultNameFull, "x")
fileResult.close()
# display
if log:
print()
util.print_pers("Level: {0}".format(hierarNum+1), fileResultNameFull)
util.print_pers("Model: {0}".format(modelData['name']), fileResultNameFull)
# ------------------------------------------------------------------- loop on iterations
# init
dataset_sizes = {}
accuracyALL = np.zeros(num_iterations)
CM_all = np.zeros((2, 2))
CM_perc_all = np.zeros((2, 2))
for r in range(0, num_iterations): #(nFolds-1)
# display
if log:
util.print_pers("", fileResultNameFull)
util.print_pers("Iteration n. {0}".format(r + 1), fileResultNameFull)
util.print_pers("", fileResultNameFull)
# get current model
if modelData['name'] == 'vgg16_bn_Mahdi':
# load pretrained
dirPretrainedModel = dirPretrainedModels + 'level_{}'.format(hierarNum+1) + '/' + modelData['name'] + '/'
fileSaveModel = open(os.path.join(dirPretrainedModel, 'model_1.dat'), 'rb')
currentModel = pickle.load(fileSaveModel)[0]
fileSaveModel.close()
currentModel.load_state_dict(torch.load(os.path.join(dirPretrainedModel, 'modelsave_1_final.pt')))
# block parameters
for param in currentModel.parameters():
param.requires_grad = True # deep tune
# change last layer
new_classifier = currentModel.classifierG
new_classifier[-1] = nn.Linear(modelData['sizeFeatures'], 2)
currentModel.classifierG = new_classifier
# image size
imageSize = 224
if modelData['name'] == 'resnet18':
# load model
dirPretrainedModel = dirPretrainedModels + 'level_{}'.format(hierarNum+1) + '/' + modelData['name'] + '/'
fileSaveModel = open(os.path.join(dirPretrainedModel, 'model_1.dat'), 'rb')
currentModel = pickle.load(fileSaveModel)[0]
fileSaveModel.close()
currentModel.load_state_dict(torch.load(os.path.join(dirPretrainedModel, 'modelsave_1_final.pt')))
# block parameters
for param in currentModel.parameters():
param.requires_grad = True # deep tune
# change last layer
new_fc = nn.Linear(modelData['sizeFeatures'], 2)
currentModel.fc = new_fc
imageSize = 224
#currentModel.double()
# cuda
if cuda:
currentModel.to('cuda')
# log
if log:
print(currentModel)
# optim
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(currentModel.parameters(), lr=0.02, momentum=0.9, weight_decay=0.0005)
# sched
exp_lr_scheduler = list()
exp_lr_scheduler.append(lr_scheduler.StepLR(optimizer_ft, step_size=20, gamma=0.5))
# split into classes
# first delete dir
if os.path.exists(dirOutTrainTest):
shutil.rmtree(dirOutTrainTest)
# create
if not os.path.exists(dirOutTrainTest):
os.makedirs(dirOutTrainTest)
split_folders.ratio(dirDbTest, output=dirOutTrainTest, seed=random(), ratio=(.4, .1, .5))
util.print_pers("", fileResultNameFull)
# preprocess
transform = {
'train':
transforms.Compose([
transforms.CenterCrop(256),
transforms.Resize(imageSize, interpolation=PIL.Image.BILINEAR),
#transforms.RandomRotation(45),
transforms.ToTensor()
]),
'val':
transforms.Compose([ # [1]
transforms.CenterCrop(256),
transforms.Resize(imageSize, interpolation=PIL.Image.BILINEAR),
transforms.ToTensor()
])
}
# ------------------------------------------------------------------- TRAIN
# load data
# train
all_idb2_train = datasets.ImageFolder(os.path.join(dirOutTrainTest, 'train'),
transform['train'])
all_idb2_train_loader = torch.utils.data.DataLoader(all_idb2_train,
batch_size=batch_sizeP_norm, shuffle=True,
num_workers=numWorkersP, pin_memory=True)
util.print_pers("\tClassi: {0}".format(all_idb2_train.classes), fileResultNameFull)
dataset_sizes['train'] = len(all_idb2_train)
util.print_pers("\tDimensione dataset train: {0}".format(dataset_sizes['train']), fileResultNameFull)
# val
all_idb2_val = datasets.ImageFolder(os.path.join(dirOutTrainTest, 'val'),
transform=transform['val'])
all_idb2_val_loader = torch.utils.data.DataLoader(all_idb2_val,
batch_size=batch_sizeP_norm, shuffle=False,
num_workers=numWorkersP, pin_memory=True)
util.print_pers("\tClassi: {0}".format(all_idb2_val.classes), fileResultNameFull)
dataset_sizes['val'] = len(all_idb2_val)
util.print_pers("\tDimensione dataset val: {0}".format(dataset_sizes['val']), fileResultNameFull)
print()
# mean, std
print("Normalization...")
# save norm
fileNameSaveNorm = {}
fileSaveNorm = {}
meanNorm = {}
stdNorm = {}
dataloaders_all = list()
dataloaders_all.append(all_idb2_train_loader)
dataloaders_all.append(all_idb2_val_loader)
dataset_sizes_all = dataset_sizes['train']+dataset_sizes['val']
fileNameSaveNorm = os.path.join(dirResult, 'norm.dat')
# if file exist, load
if os.path.isfile(fileNameSaveNorm):
# read
fileSaveNorm = open(fileNameSaveNorm, 'rb')
meanNorm, stdNorm = pickle.load(fileSaveNorm)
fileSaveNorm.close()
# else, compute normalization
else:
# compute norm for all channels together
meanNorm, stdNorm = util.computeMeanStd(dataloaders_all, dataset_sizes_all, batch_sizeP_norm, cuda)
# save
fileSaveNorm = open(fileNameSaveNorm, 'wb')
pickle.dump([meanNorm, stdNorm], fileSaveNorm)
fileSaveNorm.close()
# update transforms
# train
transform['train'] = transforms.Compose([
transforms.CenterCrop(256),
transforms.Resize(imageSize, interpolation=PIL.Image.BILINEAR),
transforms.RandomHorizontalFlip(),
transforms.RandomVerticalFlip(),
transforms.RandomRotation(90),
transforms.ToTensor(),
#transforms.Normalize(
#mean=[meanNorm, meanNorm, meanNorm],
#std=[stdNorm, stdNorm, stdNorm]),
])
# val
transform['val'] = transforms.Compose([
transforms.CenterCrop(256),
transforms.Resize(imageSize, interpolation=PIL.Image.BILINEAR),
#transforms.RandomRotation(45),
transforms.ToTensor(),
#transforms.Normalize(
#mean=[meanNorm, meanNorm, meanNorm],
#std=[stdNorm, stdNorm, stdNorm]),
])
print()
# update data loaders
# train
all_idb2_train = datasets.ImageFolder(os.path.join(dirOutTrainTest, 'train'),
transform=transform['train'])
all_idb2_train_loader = torch.utils.data.DataLoader(all_idb2_train,
batch_size=batch_sizeP, shuffle=True,
num_workers=numWorkersP, pin_memory=True)
# val
all_idb2_val = datasets.ImageFolder(os.path.join(dirOutTrainTest, 'val'),
transform=transform['val'])
all_idb2_val_loader = torch.utils.data.DataLoader(all_idb2_val,
batch_size=batch_sizeP, shuffle=False,
num_workers=numWorkersP, pin_memory=True)
# train
util.print_pers("Training", fileResultNameFull)
# train net
currentModel = functions.train_model_val(currentModel, criterion,
optimizer_ft, exp_lr_scheduler,
num_epochs, dataset_sizes, all_idb2_train_loader, all_idb2_val_loader,
batch_sizeP, modelData['name'],
dirResult, r, fileResultNameFull, log, cuda)
# visualize some outputs
#functions.visualize_model(currentModel, all_idb2_val_loader, cuda, columnNames, num_images=6)
#util.pause()
# ------------------------------------------------------------------- TEST
# torch.cuda.empty_cache()
# display
if log:
util.print_pers("Testing", fileResultNameFull)
# eval
currentModel.eval()
# zero the parameter gradients
optimizer_ft.zero_grad()
torch.no_grad()
# test transform
transform['test'] = transforms.Compose([
transforms.CenterCrop(256),
transforms.Resize(imageSize, interpolation=PIL.Image.BILINEAR),
transforms.ToTensor(),
#transforms.Normalize(
#mean=[meanNorm, meanNorm, meanNorm],
#std=[stdNorm, stdNorm, stdNorm]),
])
# load data
all_idb2_test = datasets.ImageFolder(os.path.join(dirOutTrainTest, 'test'),
transform=transform['test'])
all_idb2_test_loader = torch.utils.data.DataLoader(all_idb2_test,
batch_size=batch_sizeP, shuffle=False,
num_workers=numWorkersP)
dataset_sizes['test'] = len(all_idb2_test)
util.print_pers("\tDimensione dataset test: {0}".format(dataset_sizes['test']), fileResultNameFull)
numBatches = {}
numBatches['test'] = np.round(dataset_sizes['test'] / batch_sizeP)
# loop on images
# init
predALL_test = torch.zeros(dataset_sizes['test'])
labelsALL_test = torch.zeros(dataset_sizes['test'])
for batch_num, (inputs, label) in enumerate(all_idb2_test_loader):
##################
#if batch_num > 10:
#break
##################
# get size of current batch
sizeCurrentBatch = label.size(0)
if batch_num % 100 == 0:
print("\t\tBatch n. {0} / {1}".format(batch_num, int(numBatches['test'])))
if plotta:
util.visImage(inputs)
util.print_pers("\tClasse: {0}".format(label), fileResultNameFull)
# util.pause()
# stack
indStart = batch_num * batch_sizeP
indEnd = indStart + sizeCurrentBatch
# extract features
if cuda:
inputs = inputs.to('cuda')
label = label.to('cuda')
# predict
with torch.set_grad_enabled(False):
outputs = currentModel(inputs)
if cuda:
outputs = outputs.to('cuda')
# softmax
_, preds = torch.max(outputs, 1)
predALL_test[indStart:indEnd] = preds
labelsALL_test[indStart:indEnd] = label
# end for x,y
# confusion matrix
CM = confusion_matrix(labelsALL_test, predALL_test)
CM_perc = CM / dataset_sizes['test'] # perc
accuracyResult = util.accuracy(CM)
CM_all = CM_all + CM
CM_perc_all = CM_perc_all + CM_perc
# print(output_test)
util.print_pers("\tConfusion Matrix (%):", fileResultNameFull)
util.print_pers("\t\t{0}".format(CM_perc * 100), fileResultNameFull)
util.print_pers("\tAccuracy (%): {0:.2f}".format(accuracyResult * 100), fileResultNameFull)
# assign
accuracyALL[r] = accuracyResult
# newline
util.print_pers("", fileResultNameFull)
# save iter
fileSaveIter = open(os.path.join(dirResult, 'results_{0}.dat'.format(r+1)), 'wb')
pickle.dump([accuracyResult], fileSaveIter)
fileSaveIter.close()
# fileSaveModelIter = open(os.path.join(dirResult, 'model_{0}.dat'.format(r+1)), 'wb')
# pickle.dump([currentModel], fileSaveModelIter)
# fileSaveModelIter.close()
# del
if cuda:
del currentModel
del all_idb2_train, all_idb2_train_loader
del all_idb2_val, all_idb2_val_loader
del all_idb2_test, all_idb2_test_loader
del inputs, label
del outputs, preds
del criterion, optimizer_ft, exp_lr_scheduler
torch.cuda.empty_cache()
# end loop on iterations
# average accuracy
meanAccuracy = np.mean(accuracyALL)
stdAccuracy = np.std(accuracyALL)
meanCM = CM_all / num_iterations
meanCM_perc = CM_perc_all / num_iterations
# display
util.print_pers("", fileResultNameFull)
util.print_pers("Mean classification accuracy over {0} iterations (%); {1:.2f}".format(num_iterations, meanAccuracy * 100),
fileResultNameFull)
util.print_pers("Std classification accuracy over {0} iterations (%); {1:.2f}".format(num_iterations, stdAccuracy * 100),
fileResultNameFull)
util.print_pers("\tMean Confusion Matrix over {0} iterations (%):".format(num_iterations), fileResultNameFull)
util.print_pers("\t\t{0}".format(meanCM_perc * 100), fileResultNameFull)
util.print_pers("\tTP (mean) over {0} iterations (%):".format(num_iterations), fileResultNameFull)
util.print_pers("\t\t{0:.2f}".format(meanCM_perc[1, 1] * 100), fileResultNameFull)
util.print_pers("\tTN (mean) over {0} iterations (%):".format(num_iterations), fileResultNameFull)
util.print_pers("\t\t{0:.2f}".format(meanCM_perc[0, 0] * 100), fileResultNameFull)
util.print_pers("\tFP (mean) over {0} iterations (%):".format(num_iterations), fileResultNameFull)
util.print_pers("\t\t{0:.2f}".format(meanCM_perc[0, 1] * 100), fileResultNameFull)
util.print_pers("\tFN (mean) over {0} iterations (%):".format(num_iterations), fileResultNameFull)
util.print_pers("\t\t{0:.2f}".format(meanCM_perc[1, 0] * 100), fileResultNameFull)
#close
fileResult.close()
# save
fileSaveFinal = open(os.path.join(dirResult, 'resultsFinal.dat'), 'wb')
pickle.dump([meanAccuracy], fileSaveFinal)
fileSaveFinal.close()
# del
torch.cuda.empty_cache()